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Abstract. Most efficient adaptive mesh methods employ only a few strategies, including local mesh refinement
(h-adaptation), movement of mesh nodes (r-adaptation), and node reconnection (c-adaptation). Despite of its sim-
plicity, node reconnection is the least popular of the three. However, using only node reconnection the discretization
error can be significantly reduced. In this paper, we develop and numerically analyze a new c-adaptation algorithm
for mimetic finite difference discretizations of elliptic equations on triangular meshes. Our algorithm is based on a
new error indicator for such discretizations, which can also be used for unstructured general polygonal meshes. We
demonstrate the efficiency of our new algorithm with numerical examples.
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1. Introduction
The predictions and insights gained from numerical simulations can only be as good as

the underlying physical models and their discrete approximations. One of the approaches
that can be used to increase the accuracy of discrete approximations is to employ adaptive
meshes. The strategies that are used for the generation of adaptive meshes can be divided
into three categories: local mesh refinement (h-adaptation; for early work in the context of
finite element discretizations, see [1, 18]), movement of mesh nodes (r-adaptation; see, for
example, [4, 15, 20]), and node reconnection (c-adaptation; e.g. [19]). Note that r-adaptation
does not change the connectivity of the mesh, while both h-adaptation and c-adaptation do,
by the introduction of new mesh nodes and edges, and by changing the connectivity of the
mesh, respectively. Despite their simplicity, node reconnection mesh adaptation methods are
the least popular of the three.

A robust and flexible mesh adaptation method must leverage more than one adaptation
strategy (see, e.g., [15, 7]). However, it is useful to analyze each strategy separately. For
example, there exists a large body of literature that is concerned exclusively with the analysis
of the local mesh refinement strategy. In this paper, we consider a pure node reconnection
strategy.

In our node reconnection adaptation strategy, we fix the positions of mesh nodes and
modify only the topology. For triangular meshes, the topological changes are reduced to
swapping of mesh edges. In particular, a given edge has two adjacent triangles that form a
quadrilateral for which this edge is a diagonal. Deleting this edge and introducing a new edge
that coincides with the other diagonal of the patch is referred to as edge swapping. One of the
goals of this paper is to show that even with such a simple approach, the discretization error
can be significantly decreased.

We consider the model elliptic boundary value problem:

div ~J = q (1.1)
~J = −K grad φ. (1.2)

Hereφ denotes a scalar function that we refer to as the intensity,~J denotes a vector function
referred to as the current,K denotes a full symmetric diffusion tensor, andq denotes a source
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function. The problem is posed in a bounded polygonal domainΩ ⊂ <2, and is subject
to appropriate boundary conditions on∂Ω. For simplicity, we assume that homogeneous
Dirichlet boundary conditions are imposed on∂Ω.

On a particular mesh, the above defined elliptic problem will be discretized using the
mimetic finite difference (MFD) method. This method mimics the fundamental properties of
the continuous equation; namely, the symmetry of the divergence and the gradient operators
(div∗ = −K grad in K−1 weighted inner product), local mass balance, and the null spaces
of the involved operators. The MFD method has been successfully applied to many different
systems of first-order PDEs on simplicial [13, 12] and polygonal meshes [14, 6]. In particular,
for descriptions of MFD methods for the diffusion equation on unstructured triangular grids
see [9, 10].

A node reconnection strategy (as well as the other adaptation strategies) requires an ef-
ficient error indicator, which is used to decide where to modify the mesh. We propose a new
error indicator which is well suited for mimetic finite difference discretizations. On each
triangular element, a linear function is reconstructed using a least-squares fit to the discrete
solution. The error is then estimated by integrating the square of the discontinuity in the linear
functions across triangle edges. Note that this error indicator can also be used on unstructured
polygonal meshes.

The paper outline is as follows. In Section 2, we describe briefly the MFD method. In
Section 3, we develop a new error indicator. The actual mesh adaptation strategy based on a
local version of this error indicator is covered in Section 4. The numerical tests in Section 5
demonstrate the basic properties of the proposed method and its efficiency.

2. Mimetic finite difference method
Let Ωh be a non-overlapping conformal partition ofΩ into triangular elementsE. For

every elementE we denote by|E| its area and byhE its diameter. Similarly, for each edge`
we denote by|`| its length. For the sake of simplicity of our notation, we denote by∂E the
boundary ofE as well as the union of edges ofE.

We introduce the current operatorG , G φ = −Kgradφ. Furthermore, we introduce two
inner products

( ~J, ~I )X =
∫

Ω

~J ·K−1~I dA and (φ, ψ)Q =
∫

Ω

φψ dA (2.1)

in the spaceX of currents and in the spaceQ of intensities, respectively.
Using the introduced notation and imposing the homogeneous Dirichlet conditions, the

well known identity∫
∂Ω

φ ( ~J, φ) dl =
∫

Ω

φdiv ~J dA+
∫

Ω

( ~J, gradφ) dA (2.2)

can be written as

( ~J, G φ)X = (φ, div ~J)Q.

This expression clearly states that the current and divergence operators are adjoint to each
other, i.e.G = div∗. The MFD method produces discretizations of these operators that are
adjoint to each other with respect to inner products in discrete spaces. The MFD method can
be divided into four major steps.

The first step of the MFD method. The first step of the MFD method is to specify
degrees of freedom for the physical variablesφ and ~J and their location. We consider the
spaceQd of discrete intensities that are constant on each triangleE. The dimensionNQ
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of Qd is obviously equal to the number of triangles inΩh. The component ofφ ∈ Qd

associated withE will be denoted byφE . Finally, for every sufficiently smooth functionψ
(e.g.ψ ∈ L1(Ω)), we define the vectorψI ∈ Qd by

ψI
E =

1
|E|

∫
E

ψ dA. (2.3)

With every elementE in Ωh and to every edgè of E, we associate a numberJ`
E ap-

proximating the normal component of the average current through edge`. Here, we make the
continuityassumption that for each edge` shared by two trianglesE1 andE2, we have

J`
E1

= −J`
E2
. (2.4)

Let Xd be the vector space of edge-based discrete currents. The dimensionNX of Xd is
equal to the number of boundary edges plustwice the number of interior edges. We take
Xd to be the subspace of<NX in which the continuity conditions (2.4) hold. The restriction
of J ∈ Xd to the boundary ofE will be denoted byJE . Finally, for every sufficiently
smooth vector-valued function~I (e.g.,~I ∈ (Ls(Ω))2, s > 2, anddiv ~I ∈ L2(Ω)), we define
II ∈ Xd for an edgè ∈ ∂E by

( II)`
E =

1
|`|

∫
`

~I · ~n`
E dl. (2.5)

It was proved in [5] that this interpolation operator is well defined and uniformly bounded.
The second step of the MFD method.In the second step of the MFD method, we equip

the spaces of discrete intensities and currents with inner products. The inner product onQd

is given by

[φ, ψ]Qd =
∑

E∈Ωh

φE ψE |E|, (2.6)

while the inner product onXd is given by

[J, I ]Xd =
∑

E∈Ωh

[J, I ]E with [J, I ]E = JT
EME IE , (2.7)

whereME is a symmetric positive definite matrix. We refer to [9, 10] for the derivation of
matrixME (see also [6] for the derivation ofME in the case of a general polygon).

Some minimal approximation properties for this inner product are required to obtain the
MFD method with the optimal convergence rate. The first assumption states that there are
two positive constantss1 ands2 such that

s1 |E|
∑

`∈∂E

( I`
E)2 ≤ [ I , I ]E ≤ s2 |E|

∑
`∈∂E

( I`
E)2, (2.8)

for all E. In other words, the matrixME is spectrally equivalent to the identity matrix. The
constantss1 ands2 depend only on the anisotropy of the mesh elements and the tensorK.

The second assumption states that for every elementE, every linear functionψL onE
and everyI ∈ Xd, we have the Green’s formula

[(K∇ψL)I , I ]E =
∑

`∈∂E

∫
`

ψL I`
E dl −

∫
E

ψL (DIVd I )E dA, (2.9)
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where(·)I denotes the interpolation operator (2.5). The discrete divergence operatorDIVd

is defined below. In other words, (2.9) states that the MFD method is exact for diffusion
problems with piecewise constant tensors and piecewise linear solutions.

The third step of the MFD method. The third step of the MFD method consists of the
derivation of an approximation to the divergence operator. The discrete divergence opera-
tor, DIVd : Xd → Qd, naturally arises from the Gauss divergence theorem applied on an
elementE as

(DIVd I )E
def
=

1
|E|

∑
`∈∂E

I`
E |`|. (2.10)

The fourth step of the MFD method. In the fourth step of the MFD method, we de-
fine the discrete current operator,Gd : Qd → Xd, as the adjoint to the discrete divergence
operator,DIVd with respect to inner products (2.6) and (2.7), i.e.,

[ I , Gd φ]Xd = [φ, DIVd I ]Qd , ∀φ ∈ Qd, ∀ I ∈ Xd. (2.11)

The discrete current operator is uniquely defined by the discrete divergence operator and the
two inner products. If we change one of the three, we obtain a new formula for the operator
Gd . Definition (2.11) ensures symmetry of the forthcoming algebraic problem (2.14).

Using the discrete current and divergence operators, the continuous problem (1.1), (1.2)
is discretized as follows:

DIVd Jd = qI (2.12)

Jd = Gd φd (2.13)

whereqI is the interpolant of the source functionq given by (2.3).
The convergence of the discrete solution(Jd,φd) has been studied in [2, 3, 5]. There it

was proved that, on unstructured polygonal meshes, the convergence of the current is of first
order, while the convergence of the intensity is of second order.

Solution method. Since the matrix associated with inner product (2.7) is irreducible,
the discrete operatorDIVd Gd is a dense matrix, that is also symmetric positive definite.
However, problem (2.12), (2.13) can be reduced to a problem with a sparse symmetric pos-
itive definite matrix using standard hybridization arguments (see e.g. [8] in the context of
finite element methods). To that end, we consider continuity condition (2.4) as the constraint
condition for the solution of (2.12), (2.13). Then the Karush-Kuhn-Tucker (KKT) theory of
constrained optimization [17] implies that the resulting problem can be written as a symmet-
ric system of three equations in the primary variables(Jd,φd) and a vector of the Lagrange
multipliersλd. The size of vectorλd is equal to the number of mesh edges. The primary un-
knowns can be explicitly eliminated from the KKT system resulting in the algebraic problem

Aλd = bd (2.14)

whereA is a sparse symmetric positive definite matrix (see [16] for more detailed exposition).
Note that vectorλd approximates the intensityφ at mid-points of mesh edges with second
order accuracy.

3. Error indicator
The theory ofa priori anda posteriorierror estimates is well established for mixed finite

element methods on simplicial meshes [21]. On triangular meshes, the MFD method can be
formulated as a mixed finite element (MFE) method with a special numerical quadrature rule
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which corresponds to inner product of two currents [2]. It was proved in [2] that the addi-
tional error induced by this numerical integration is sufficiently small so that both methods
have the same convergence order. In [3], finite element analysis has been used to prove su-
perconvergence of currents on smooth meshes. These relations can be used to derive optimal
a posteriorierror estimates for the MFD method on simplicial meshes.

In this section, we propose an error indicator for triangular meshes, which can be easily
extended to general polygonal meshes. The indicator contains terms which have analogs in
residual based error estimates for MFE methods [11]. The theoretical analysis of this error
indicator will be the topic of future research.

We define a functionφL that is linear on each elementE, but may be discontinuous
across mesh edges. The restriction ofφL to elementE, further denoted byφL

E , is the best
least-squares fit to the values of vectorλd at the mid-points of mesh edges and the value
of the intensity at the center of elementE. Let xE,1, xE,2, xE,3 be the edge mid-points of
elementE andλE,1,λE,2,λE,3 be the corresponding Lagrange multipliers. Further, letφE

be the intensity at the element centerxE,m. Then

φL
E = arg min

φL
E

(φL
E(xE,m)− φE

)2
+

3∑
i=1

(
φL

E(xE,i)− λE,i

)2 . (3.1)

Our error indicator is given by

η2 =
∑
`∈Ωh

η2
` with η2

` =
1
h`

∫
`

[
φL
]2
`
dl (3.2)

where[·]` denotes the jump ofφL across mesh edgèandh` denotes the characteristic size
of mesh elements sharing edge` (e.g. the edge length). Since we use homogeneous Dirichlet
boundary conditions, jump for boundary edges can be defined as

[
φL
]
`

= φL. We note
that using only the edge-centered valuesλE,i without taking into account the cell-centered
intensityφE , that is using

φL
E = arg min

φL
E

3∑
i=1

(
φL

E(xE,i)− λE,i

)2
(3.3)

instead of (3.1), would be insufficient for certain mesh configurations, as will be explained
in Section 4 and proved in Appendix A. Note that in this latter case all edge-centered values
λE,i are coincident with the plane given byφL

E .
Some of the residual-based error estimates in MFE methods use the jump of the tan-

gential component of a discrete current across mesh edges, which is equivalent toη for a
triangular element (see e.g. [11]).

The motivation for using (3.2) as the error indicator comes from the following observa-
tion. The error between the integral average of the continuous currentJI and the discrete
solutionJd satisfies [5]

DIVd (JI − Jd) = 0.

For a triangular elementE, this error is uniquely defined by its values on any two edges.
Thus,(JI − Jd)E is the interpolant of a constant vector or

(JI − Jd)E = (∇ψL
E)I
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whereψL
E is a linear function. Now, assumption (2.9) results in the estimate

|||JI − Jd|||2Xd =
∑
`∈Ωh

∫
`

[
ψL
]
`

(JI − Jd)` dl ≤

≤ C

(∑
`∈Ωh

1
h`

∫
`

[
ψL
]2
`

dl

)1/2

|||JI − Jd|||Xd ,

(3.4)

where||| · |||Xd denotes the norm induced by inner product (2.7)

||| I |||2Xd := [ I , I ]Xd .

The constantC in (3.4) depends only on constants1 from (2.8) and the shape regularity of
mesh elements.

4. Node reconnection strategy
In this section, we describe our c-adaptation strategy for the solution of an elliptic prob-

lem. Recently, similar strategy was suggested for improving the quality of mesh elements in
the rezone step of Arbitrary Lagrangian-Eulerian simulations [19].

2O

1O

(a)

1S
2S

(b)

FIG. 4.1. Definition of edge swap. A pair of original triangular elementsO1 and O2 (a) and the pair of
triangular elementsS1 andS2 (b) that results from swapping of the common edge.

As was mentioned in the introduction, on triangular meshes, the c-adaptation strategy
can simply be described as a sequence of edge swaps, or, in other words, replacements of
a selected edge by another one. In particular, each interior edge is shared by two triangular
elements, forming a quadrilateral patch as shown in Figure 4.1(a). Swapping this edge with
the other diagonal of the quadrilateral replaces the two elementsO1 andO2 by the other pair
S1 andS2 (see Figure 4.1(b)).

FIG. 4.2. An example of two edge connected triangular elements that do not allow for edge swapping. The
swapped edge (dashed line) would lie outside the union of the two elements.

In order to compute the error indicator for the pairS1 andS2 in Figure 4.1(b), we need
a simple estimate for two new element-based intensitiesφS1

andφS2
and one Lagrange

multiplier for the swapped edge (see (3.1)). Recall that the discrete Green’s function for the
elliptic problem has a fast decrease rate. Therefore, it is possible to estimate the required
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data by solving a local Dirichlet problem on a mesh patch containing trianglesS1 andS2.
The error due to inaccurate data on boundary edges depends on the size of this patch and its
alignment with the principle directions of tensorK. In this paper, we consider the smallest
possible patch, namely the patch that consists of only two triangles.

For the reason mentioned above, we may simplify the computation of the error indicator
by ignoring contributions from boundary edges of the patch. Thus, we have to compare error
indicator associated only with the two diagonals of the quadrilateral patch. The numerical
experiments presented later confirm the validity of our assumptions. In principle, we can
work with patches consisting of more than two elements to increase robustness and optimality
of our error indicator.

We want to emphasize, that it is necessary to use the cell-centered valueφE of the in-
tensity and recompute the edge-based Lagrange multiplier to estimate the error. Indeed, for
any rectangular patch, linear reconstructions based on (3.3) result in equal error estimates for
both original and swapped edges and thus no swap would be performed. This is proved in
Appendix A.

In Figure 4.3, we introduce our edge swapping algorithm in detail. Note that we assume
that the edges can be accessed in some particular order and that some edges might have
been flagged for the purpose of excluding them from the edge swapping algorithm. For
example, a given mesh might already be constructed in such a way that it is aligned with a
material interface. Such edges that lie on this interface should then be excluded from the edge
swapping algorithm. It is also possible that a particular edge cannot be swapped. Figure 4.2
illustrates such a case. Here, the geometry of the mesh is such that the swapped edge would
fold the mesh.

Algorithm (c-adaptation):
1. Compute the solution of the discrete problem on the current mesh.
2. Loop over all interior edges. For each edge do the following:

(a) If the edge is flagged for exclusion from edge swapping, proceed to
the next edge.

(b) If the geometry does not allow swapping, proceed to the next edge.
(c) Compute the error indicatorη`,O for the current pair of connected

elements (O1 andO2 in Figure 4.1(a)).
(d) Compute the error indicatorη`,S for the pair of elements in the

swapped configuration (elementsS1 andS2 in Figure 4.1(b)). This
requires the solution of a local Dirichlet problem.

(e) If η`,S ≤ η`,O − ε, add the edge to the list of edges to be processed
further (also storeγ` = η`,O−ε−η`,S), and proceed to the next edge.

3. Loop over the list of edges that have been selected for further processing in
Step 2 in the order of their associated error reduction indicatorγ` from the
largest to the smallest. For each edge, perform the swap. Then delete this
edge from the list, together with all edges, if any, that are on the boundary
of the patch.

4. If no swaps have been performed in Step 3, stop; else proceed to Step 1.

FIG. 4.3.The c-adaptation algorithm.

The small positive thresholdε in Step 2(e) of the c-adaptation algorithm is used to avoid
infinite alternation between mesh configurations with similar error estimates, and thereby
helps to ensure that the algorithm terminates.
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Note that in our algorithm, we recompute the solution of the discrete problem after each
iteration of swapping (i.e. after each loop over the edges). A cheaper, albeit certainly less
accurate, version of the c-adaptation algorithm can be obtained by computing the solution of
the discrete problem only in the first iteration. Approximate values for intensities and currents
on adjacent-triangle patches that result from edge swapping are computed during the error
estimation phase (Steps 2(c) and 2(d) of the algorithm) and can be used to initialize the new
mesh. In this paper, we are not concerned with the linear solver that is used in Step one of the
c-adaptation algorithm. However, we want to emphasize that in subsequent iterations after the
initial iteration, we can obtain a very good starting value for an iterative linear solver, by using
the intensity and current values computed in the error estimation phase. Since the errors in
this starting value are of high frequency, a few iterations of a simple stationary method such as
Gauss-Seidel relaxation should be enough to obtain the solution of the discrete linear system
on the new mesh.

Step three of the c-adaptation algorithm, requires the sorting of the list of edges that have
been selected for further processing, either as this list is assembled in Step two, or directly in
Step three. A cheaper alternative is to use a binning technique, where edges are categorized
into a small number of bins according to the size of their associated error reduction indicator.
One first determines the largest error reduction indicatorγmax and picks the number of bins
to be used,Nbins. An edge is assigned to bink, if its error reduction indicatorγ` satisfies
k/Nbins ≤ γ`/γmax < (k − 1)/Nbins. Finally, Step three of the c-adaptation algorithm is
performed by looping over the bins from largest to smallest and processing the edges in each
bin in whichever order they are stored. The removal of edges from the list of edges to be
processed is an expensive operation if implemented in a naive fashion. However, if the edge
data structure is rich enough, one can delete edges from this list in constant time per edge.

Overall, the c-adaptation algorithm has the potential to be implemented very cheaply.
Clearly, the discrete system must be solved in the first iteration. In subsequent iterations, it
will be as costly as fixed number of evaluations of a residual. Each of the iterations of the rest
of the algorithm is of complexityO(NX). It is not clear, however, how fast the c-adaptation
algorithm converges. So we cannot estimate the overall complexity of the algorithm.

5. Numerical experiments
In this section, we present numerical results by way of selected examples. The ex-

ample PDEs are chosen such that there are regions for which the solution has a gradient
of a large magnitude. In all following examples, the diffusion tensor is the identity tensor
(K = diag{1, 1}) and the true error is computed in the mesh dependent norm

|||φI − φd|||Q = [φI − φd, φ
I − φd]

1/2
Q .

In our first example, the exact solution is given by

φ(x, y) = 1− tanh
(x− 0.125)2 + (y − 0.125)2

e

wheree = 0.01 (see Figure 5.1). We consider three different meshes on the domain
(−0.5, 0.5)× (−0.5, 0.5), each consisting of 512 triangular elements. Results of the c-
adaptation algorithm (see Figure 4.3) are shown in Figure 5.2, with original meshes on the left
and the corresponding adapted meshes on the right. Note that, except in one circular region,
the exact solution is close to constant (see the isolines and the surface plot in the upper part
of Figure 5.2). Therefore, swapping edges outside of the circular region with large gradients
will not significantly decrease the discretization error. In fact, all meshes that were obtained
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−0.5 0 0.5
−0.5

0

0.5
p(x,y) = 1 − tanh( |(x−0.125 , y−0.125)|2 / 0.01 )

FIG. 5.1.Example 1: Analytical solutionφ(x, y), isolines on the left and surface plot on the right.

after edge swapping (on the right in Figure 5.2) are equally suitable for solution of this prob-
lem. The discrepancy of the error among them is less than 0.2%. In the first and second case,
only one iteration (i.e. one loop over the edges) was necessary to decrease the error by 15%
(from 0.01373 to 0.01166) and 14% (from 0.01353 to 0.01166), respectively. In the last case,
the original mesh was of very poor quality, and our c-adaptation procedure took 10 iterations,
with an eventual improvement of the solution by 72% (from 0.0411 to 0.01169).

In our second and third example, the exact solution is given by

φ(x, y) = exp
{
−a2

(x+ by)2 + c2 (x− b/y)2
}

with a = 1/2, b = 1/3 andc = 16/3. A surface plot with isolines of this function is shown
in the upper left part of Figure 5.3.

In our second example, the computational domain is the square(−1, 1)× (−1, 1), while
the domain for the third example is only the inscribed circle (dashed line). The meshes for
the examples consist of 3042 and 2352 triangles, respectively, so that there is a comparable
number of elements per unit area. Note, that in both cases the elements tend to align perpen-
dicular to isolines of the exact solution and in the direction of the anisotropy. It is pertinent
to point out that the error is characterized by the Hessian ofφ which is small in the vicinity
of the liney = x/3. Although some elements visually appear to be of poor quality, the error
in example two (Figure 5.3) decreased by 49% (from 0.0148 to 0.007516) after the first iter-
ation and by 65% (from 0.0148 to 0.005171) after the second, both times with respect to the
original mesh. In example three, a single iteration (with 66 swapped edges) was needed to
decrease the error by 25% (from 0.008903 to 0.006659, Figure 5.4). For the latter example, a
detailed view of a region with some of the most stretched elements is shown.

6. Conclusions
We have analyzed numerically a pure c-adaptation strategy for an elliptic problem and

have demonstrated that the discretization error can be significantly reduced by edge swapping
alone. We have also proposed a new error indicator for this strategy. Combination of the c-
adaptation strategy with other adaptation strategies is a promising and challenging task for
future research.
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Appendix A. Necessity of cell-centered intensities.
THEOREM A.1. For a rectangular patch, the error estimate based only on edge-centered
values of pressure (i.e. without considering cell-centered values), will be exactly the same for
the swapped edge as for the original one.

Proof.We consider a rectangle of size2∆x×2∆y centered at point(x0, y0) that is given
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FIG. A.1. Rectangle split into two triangular elements by the original (a) or swapped (b) edge. View of linear
reconstructions along the original edge.

by nodes(x0 ±∆x, y0 ±∆y). Without loss of generality, we use the subscripts as in Figure
A.1 when referring to particular positions. The rectangle is split into two triangular elements
O1 andO2 by edgè O as shown in Figure A.1(a). If we replace (swap) the edge by`S , the
new triangles will be denotedS1 andS2 as in Figure A.1(b). The intensity is given by discrete
values in edge mid-points, that is byλ0,±1, λ±1,0 andλ0,0 as computed by (2.14). In each
of the triangles, we construct a linear functionφL(x, y) = Ax + By + C, going through
the exact edge-centered values. (Since we are working with triangles, such a function always
exists.) If we denote the jumps of linear reconstructions for the original and swapped triangles
by
[
φL
]
`O

= φL
O2
− φL

O1
and

[
φL
]
`S

= φL
S2
− φL

S1
, then the error indicator (3.2) using the

edge-based reconstruction (3.3) for the original patch is

η2
O =

1√
V

∫
lO

[
φL(x, y)

]2
`O

dl, (A.1)

and similarly for the swapped one. The patch volumeV is clearly equal for both configura-
tions:V = |O1|+ |O2| = |S1|+ |S2|. The theorem states that

η2
O = η2

S . (A.2)

To show this, we first simplify (A.1). Since the valuesλ at edge mid-points are known, values[
φL
]
`O

in nodes can be computed from linear reconstructions and, hence, the integrand is
quadratic. We use Simpson’s rule and get

η2
O =

1√
V

∫
`O

[
φL(x, y)

]2
`O

dl =
|`O|
6
√
V

([
φL
]2
`O;−1,−1

+ 4
[
φL
]2
`O;0,0

+
[
φL
]2
`O;1,1

)
,

(A.3)
where|`O| is the length of the original edge. This can be further simplified, since the linear
functionsφL

O1
andφL

O2
are constructed so, that they intersect at the mid-point of the com-

mon edge of their associated triangles. From here it follows (compare Figure A.1(c)) that[
φL
]
`O;0,0

= 0 and
[
φL
]
`O;1,1

= −
[
φL
]
`O;−1,−1

, which reduces the error estimate (A.3) to

η2
O = k

[
φL
]2
`O;1,1

= k
[
φL
]2
`O;−1,−1

,
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with constantk = |`O| /(3
√
V ). This holds for any quadrilateral patch. Moreover, for the

rectangle, both the original and the swapped edge have the same length|`O| = |`S |, so that

η2
S = k

[
φL
]2
`S ;−1,1

= k
[
φL
]2
S;1,−1

,

with the same constantk. Thus, to prove Theorem A.2, we only need to show that∣∣∣[φL
]
O;1,1

∣∣∣ = ∣∣∣[φL
]
S;−1,1

∣∣∣ . (A.4)

To construct the linear function for the triangle with edge mid-points(xα, yα), (xβ , yβ)
and(xγ , yγ), we computeA,B andC such that xα yα 1

xβ yβ 1
xγ yγ 1


 A

B
C

 =

 λα

λβ

λγ

 .

If we denote the matrix byR and the right-hand side byΛ, the reconstruction is

φL(x, y) =

 A
B
C

 ·

 x
y
1

 = R−1Λ ·

 x
y
1

 .

Particularly for the upper right hand and upper left hand corners of the rectangle, we have

[
φL
]
O;1,1

=
(R−1Λ


O2

−
R−1Λ


O1

) x0 + ∆x
y0 + ∆y

1


= λ0,1 + λ0,−1 − λ1,0 − λ−1,0,[

φL
]
S;−1,1

=
(R−1Λ


S2

−
R−1Λ


S1

) x0 −∆x
y0 + ∆y

1


= λ0,1 + λ0,−1 − λ1,0 − λ−1,0,

so that (A.4) holds and thus the theorem is proved. �


